МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №11

Рассмотрена и рекомендована к утверждению Педагогическим советом Протокол №1 от 30.08.2023г.

Утверждена приказом №434 от 01.09.2023г.

Рабочая программа по физике для 7 — 9 х классов на 2023-2024 учебный год

Планируемые результаты освоения учебного предмета

Личностные, метапредметные, предметные результаты освоения предмета.

Личностными результатами обучения физике в основной школе являются:

- сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Общими предметными результатами изучения курса являются:

- умение пользоваться методами научного исследования явлений природы: проводить наблюдения, планировать и выполнять эксперименты, обрабатывать измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять результаты и делать выводы, оценивать границы погрешностей результатов измерений;

- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, использовать физические модели, выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез.

Предметные результаты (7 кл):

- понимание физических терминов: тело, вещество, материя.
- умение проводить наблюдения физических явлений; измерять физические величины: расстояние, промежуток времени, температуру; определять цену деления шкалы прибора с учётом погрешности измерения;
- понимание роли ученых нашей страны в развитие современной физики и влияние на технический и социальный прогресс.
- понимание и способность объяснять физические явления: диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел;
- владение экспериментальными методами исследования при определении размеров малых тел;
- понимание причин броуновского движения, смачивания и несмачивания тел; различия в молекулярном строении твердых тел, жидкостей и газов;
- умение пользоваться СИ и переводить единицы измерения физических величин в кратные и дольные единицы;
- умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана окружающей среды).
- понимание и способность объяснять физические явления: механическое -движение, равномерное и неравномерное движение, инерция, всемирное тяготение;
- умение измерять скорость, массу, силу, вес, силу трения скольжения, силу трения качения, объем, плотность, тела равнодействующую двух сил, действующих на тело в одну и в противоположные стороны;
- владение экспериментальными методами исследования в зависимости: пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести тела от его массы, силы трения скольжения от площади соприкосновения тел и силы, прижимающей тело к поверхности (нормального давления);
- понимание смысла основных физических законов: закон всемирного тяготения, закон Гука;
- владение способами выполнения расчетов при нахождении: скорости (средней скорости), пути, времени, силы тяжести, веса тела, плотности тела, объема, массы, силы упругости, равнодействующей двух сил, направленных по одной прямой;
- умение находить связь между физическими величинами: силой тяжести и массой тела, скорости со временем и путем, плотности тела с его массой и объемом, силой тяжести и весом тела;
- умение переводить физические величины из несистемных в СИ и наоборот
- понимание принципов действия динамометра, весов, встречающихся в повседневной жизни, и способов обеспечения безопасности при их использовании;
- умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана окружающей среды).
 - понимание и способность объяснить физические явления: атмосферное давление, давление жидкостей, газов и твердых тел, плавание тел, воздухоплавание, расположение уровня жидкости в сообщающихся сосудах, существование воздушной оболочки Землю, способы уменьшения и увеличения давления;

- умение измерять: атмосферное давление, давление жидкости на дно и стенки сосуда, силу Архимеда;
- владение экспериментальными методами исследования зависимости: силы Архимеда от объема вытесненной воды, условий плавания тела в жидкости от действия силы тяжести и силы Архимеда;
- понимание смысла основных физических законов и умение применять их на практике: закон Паскаля, закон Архимеда;
- понимание принципов действия барометра-анероида, манометра, насоса, гидравлического пресса, с которыми человек встречается в повседневной жизни и способов обеспечения безопасности при их использовании;
- владение способами выполнения расчетов для нахождения давления, давление жидкости на дно и стенки сосуда, силы Архимеда в соответствие с поставленной задачи на основании использования законов физики;
- умение использовать полученные знания, умения и навыки в повседневной жизни (экология, быт, охрана окружающей среды).
- понимание и способность объяснять физические явления: равновесие тел превращение одного вида механической энергии другой;
- умение измерять: механическую работу, мощность тела, плечо силы, момент силы. КПД, потенциальную и кинетическую энергию;
- владение экспериментальными методами исследования при определении соотношения сил и плеч, для равновесия рычага;
- понимание смысла основного физического закона: закон сохранения энергии
- понимание принципов действия рычага, блока, наклонной плоскости и способов обеспечения безопасности при их использовании;
- владение способами выполнения расчетов для нахождения: механической работы, мощности, условия равновесия сил на рычаге, момента силы, КПД, кинетической и потенциальной энергии;
- умение использовать полученные знания, умения и навыки в повседневной жизни (экология, быт, охрана окружающей среды).

Предметные результаты (8 кл):

- понимание и способность объяснять физические явления: конвекция, излучение, теплопроводность, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, испарение (конденсация) и плавление (отвердевание) вещества, охлаждение жидкости при испарении, конденсация, кипение, выпадение росы;
- умение измерять: температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, удельная теплоту парообразования, влажность воздуха;
- владение экспериментальными методами исследования ависимости относительной влажности воздуха от давления водяного пара, содержащегося в воздухе при данной температуре и давления насыщенного водяного пара: определения удельной теплоемкости вещества;
- понимание принципов действия конденсационного и волосного гигрометров психрометра, двигателя внутреннего сгорания, паровой турбины с которыми человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании;
- понимание смысла закона сохранения и превращения энергии в механических и тепловых процессах и умение применять его на практике;

- овладение разнообразными способами выполнения расчетов для нахождения удельной теплоемкости, количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении, удельной теплоты сгорания, удельной теплоты плавления, влажности воздуха, удельной теплоты парообразования и конденсации, КПД теплового двигателя;
- умение использовать полученные знания, умения и навыки в повседневной жизни (экология, быт, охрана окружающей среды).
- понимание и способность объяснять физические явления: электризация тел, нагревание проводников электрическим током, электрический ток в металлах, электрические явления в позиции строения атома, действия электрического тока;
- умение измерять силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление;
- владение экспериментальными методами исследования зависимости силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала;
- понимание смысла закона сохранения электрического заряда, закона Ома для участка цепи. Закона Джоуля-Ленца;
- понимание принципа действия электроскопа, электрометра, гальванического элемента, аккумулятора, фонарика, реостата, конденсатора, лампы накаливания, с которыми человек сталкивается в повседневной жизни, и способов обеспечения безопасности при их использовании;
- владение различными способами выполнения расчетов для нахождения силы тока, напряжения, сопротивления при параллельном и последовательном соединении проводников, удельного сопротивления работы и мощности электрического тока, количества теплоты, выделяемого проводником с током, емкости конденсатора, работы электрического поля конденсатора, энергии конденсатора;
- умение использовать полученные знания, умения и навыки в повседневной жизни (экология, быт, охрана окружающей среды).
- понимание и способность объяснять физические явления: намагниченность железа и стали, взаимодействие магнитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током;
- владение экспериментальными методами исследования зависимости магнитного действия катушки от силы тока в цепи;
- умение использовать полученные знания, умения и навыки в повседневной жизни (экология, быт, охрана окружающей среды).
- понимание и способность объяснять физические явления: прямолинейное распространения света, образование тени и полутени, отражение и преломление света;
- умение измерять фокусное расстояние собирающей линзы, оптическую силу линзы;
- владение экспериментальными методами исследования зависимости изображения от расположения лампы на различных расстояниях от линзы, угла отражения от угла падения света на зеркало;
- понимание смысла основных физических законов и умение применять их на практике: закон отражения и преломления света, закон прямолинейного распространения света;
- различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой;

- умение использовать полученные знания, умения и навыки в повседневной жизни (экология, быт, охрана окружающей среды).

Предметные результаты (9 кл):

- понимание и способность описывать и объяснять физические явления: поступательное движение (назвать отличительный признак), смена дня и ночи на Земле, свободное падение тел. невесомость, движение по окружности с постоянной по модулю скоростью;
- знание и способность давать определения /описания физических понятий: относительность движения (перечислить, в чём проявляется), геоцентрическая и гелиоцентрическая системы мира; [первая космическая скорость], реактивное движение; физических моделей: материальная точка, система отсчёта, физических величин: перемещение, скорость равномерного прямолинейного движения, мгновенная скорость и ускорение при равноускоренном прямолинейном движении, скорость и центростремительное ускорение при равномерном движении тела по окружности, импульс;
- понимание смысла основных физических законов: закон Ньютона, закон всемирного тяготения, закон сохранения импульса, закон сохранения энергии и умение применять их на практике;
- умение приводить примеры технических устройств и живых организмов, в основе перемещения которых лежит принцип реактивного движения. Знание и умение объяснять устройство и действие космических ракет-носителей;
- умение измерять: мгновенную скорость и ускорение при равноускоренном прямолинейном движении, центростремительное ускорение при равномерном движении по окружности;
- умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана окружающей среды).
- понимание и способность описывать и объяснять физические явления: колебания нитяного (математического) и пружинного маятников, резонанс (в т. ч. звуковой), механические волны, длина волны, отражение звука, эхо;
- знание и способность давать определения физических понятий: свободные колебания, колебательная система, маятник, затухающие колебания, вынужденные колебания, звук и условия его распространения; физических величин: амплитуда, период, частота колебаний, собственная частота колебательной системы, высота, [тембр], громкость звука, скорость звука; физических моделей: [гармонические колебания], математический маятник;
- владение экспериментальными методами исследования зависимости периода и частоты колебаний маятника от длины его нити.
- понимание и способность описывать и объяснять физические явления/процессы: электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощение и испускание света атомами, возникновение линейчатых спектров излучения и поглощения;
- умение давать определения / описание физических понятий: магнитное поле, линии магнитной индукции; однородное и неоднородное магнитное поле, магнитный поток, переменный электрический ток, электромагнитное поле, электромагнитные волны, электромагнитные колебания, радиосвязь, видимый свет; физических величин: магнитная индукция, индуктивность, период, частота и амплитуда электромагнитных колебаний, показатели преломления света;

- знание формулировок, понимание смысла и умение применять закон преломления света и правило Ленца, квантовых постулатов Бора;
- знание назначения, устройства и принципа действия технических устройств: электромеханический индукционный генератор переменного тока, трансформатор, колебательный контур; детектор, спектроскоп, спектрограф;
- [понимание сути метода спектрального анализа и его возможностей].
- понимание и способность описывать и объяснять физические явления: радиоактивность, ионизирующее излучение;
- знание и способность давать определения/описания физических понятий: радиоактивность, альфа-, бета- и гамма-частицы; физических моделей: модели строения атомов, предложенные Д. Д. Томсоном и Э. Резерфордом; протонно-нейтронная модель атомного ядра, модель процесса деления атома урана; физических величин: поглощенная доза излучения, коэффициент качества, эквивалентная доза, период полураспада;
- умение приводить примеры и объяснять устройство и принцип действия технических устройств и установок: счетчик Гейгера, камера Вильсона, пузырьковая камера, ядерный реактор на медленных нейтронах;
- умение измерять: мощность дозы радиоактивного излучения бытовым дозиметром;
- знание формулировок, понимание смысла и умение применять: закон сохранения массового числа, закон сохранения заряда, закон радиоактивного распада, правило смещения;
- владение экспериментальными методами исследования в процессе изучения зависимости мощности излучения продуктов распада радона от времени;
- понимание сути экспериментальных методов исследования частиц;
- использование полученных знанийв повседневной жизни (быт, экология, охрана окружающей среды, техника безопасности и др.).
- представление о составе, строении, происхождении и возрасте Солнечной системы;
- умение применять физические законы для объяснения движения планет Солнечной системы,
- знать, что существенными параметрами, отличающими звёзды от планет, являются их массы и источники энергии (термоядерные реакции в недрах звёзд и радиоактивные в недрах планет);
- сравнивать физические и орбитальные параметры планет земной группы с соответствующими параметрами планет-гигантов и находить в них общее и различное;
- объяснять суть эффекта X. Доплера; формулировать и объяснять суть закона Э. Хаббла, знать, что этот закон явился экспериментальным подтверждением модели нестационарной Вселенной, открытой А. А. Фридманом.

Содержание учебного предмета

7 класс (68 ч, 2 ч в неделю)

1. Физика и физические методы изучения природы (54)

Что изучает физика. Физические явления. Наблюдения, опыты, измерения. Физика и техника.

Фронтальная лабораторная работа

1. Определение цены деления измерительного прибора.

2. Первоначальные сведения о строении вещества (5 ч)

Молекулы. Диффузия. Движение молекул. Связь температуры тела со скоростью движения его молекул. Притяжение и отталкивание молекул. Различные состояния веществ и их объяснение на основе молекулярно-кинетических представлений.

Фронтальная лабораторная работа

2. Измерение размеров малых тел.

3. Взаимодействие тел (22 ч)

Механическое движение. Равномерное движение. Скорость.

Инерция. Взаимодействие тел. Масса тела. Измерение массы тела с помощью весов. Плотность вещества.

Явление тяготения. Сила тяжести. Сила, возникающая при деформации. Вес. Связь между силой тяжести и массой.

Упругая деформация. Закон Гука.

Динамометр. Графическое изображение силы. Сложение сил, действующих по одной прямой.

Трение. Сила трения. Трение скольжения, качения, покоя. Подшипники.

Фронтальные лабораторные работы

- 3. Измерение массы тела на рычажных весах.
- 4. Измерение объёма тела.
- 5. Измерение плотности твердого тела.
- 6. Градуирование пружины и измерение сил динамометром.

4. Давление твёрдых тел, жидкостей и газов. (194)

Давление. Давление твёрдых тел.

Давление газа. Объяснение давления газа на основе молекулярно-кинетических представлений. Закон Паскаля.

Давление в жидкости и газе. Сообщающиеся сосуды. Шлюзы. (Водопровод. Гидравлический пресс.) Гидравлический тормоз.

Атмосферное давление. Опыт Торричели. Барометр-анероид. Изменение атмосферного давления с высотой. Манометры. Насосы.

Архимедова сила. Условия плавания тел. Водный транспорт. Воздухоплавание.

Фронтальные лабораторные работы

- 7. Измерение выталкивающей силы, действующей на погружённое в жидкость тело.
- 8. Выяснение условий плавания тела в жидкости.

5. Работа и мощность. Энергия (16 ч)

Работа силы, действующей по направлению движения тела. Мощность. Простые механизмы. Условие равновесия рычага. Момент силы. Равновесие тел с закреплённой осью вращения. Виды равновесия.

Равенство работ при использовании механизмов. КПД механизма.

Потенциальная энергия поднятого тела, сжатой пружины. Кинетическая энергия движущегося тела. Превращение одного вида механической энергии в другой. Энергия рек и ветра.

Фронтальные лабораторные работы

- 9. Выяснение условия равновесия рычага.
- 10. Измерение КПД при подъёме тела по наклонной плоскости.

Резервное время—14.

8 класс (68 ч, 2 ч в неделю)

1. Тепловые явления (12 ч)

Тепловое движение. Внутренняя энергия. Два способа изменения внутренней энергии: работа и теплопередача. Виды теплопередачи.

Количество теплоты. Удельная теплоёмкость вещества. Удельная теплота сгорания топлива.

2. Изменение агрегатных состояний вещества(11 ч)

Плавление и отвердевание тел. Температура плавления. Удельная теплота плавления.

Испарение и конденсация. Относительная влажность воздуха и её измерение.

Кипение. Температура кипения. Удельная теплота парообразования.

Объяснение изменений агрегатных состояний вещества на основе молекулярно-кинетических представлений.

Превращения энергии в механических и тепловых процессах.

Двигатель внутреннего сгорания. Паровая турбина.

Фронтальные лабораторные работы

- 1. Сравнение количества теплоты при смешивании воды разной температуры.
- 2. Определение удельной теплоёмкости твёрдого тела

3. Электрические явления (27 ч)

Электризация тел. Два рода зарядов. Взаимодействие заряженных тел. Электрическое поле.

Дискретность электрического заряда. Электрон. Строение атомов.

Электрический ток. Гальванические элементы. Аккумуляторы. Электрическая цепь.

Электрический ток в металлах. Сила тока. Амперметр.

Электрическое напряжение. Вольтметр.

Электрическое сопротивление.

Закон Ома для участка электрической цепи.

Удельное сопротивление. Реостаты. Виды соединений проводников.

Работа и мощность тока. Количество теплоты, выделяемое проводником с током. Счётчик электрической энергии. Лампа накаливания. Электронагревательные приборы. Расчёт электроэнергии, потребляемой бытовыми электроприборами. Короткое замыкание. Плавкие предохранители.

Фронтальные лабораторные работы

- 3. Сборка электрической цепи и измерение силы тока в её различных участках.
- 4. Измерение напряжения на различных участках электрической цепи.
- 5. Регулирование силы тока реостатом.
- 6. Измерение сопротивления проводника с помощью амперметра и вольтметра.
- 7. Измерение работы и мощности электрического тока.

4. Электромагнитные явления (7 ч)

Магнитное поле тока. Электромагниты и их применение. Постоянные магниты. Магнитное поле Земли. Действие магнитного поля на проводник с током. Электродвигатель постоянного тока.

Фронтальные лабораторные работы

- 8. Изучение электрического двигателя постоянного тока (на модели).
- 9. Сборка электромагнита и испытание его действия.

5. Световые явления (9 ч)

Источники света. Прямолинейное распространение света

Отражение света. Законы отражения. Плоское зеркало.

Преломление света.

Линза. Фокусное расстояние линзы. Построение изображений, даваемых тонкой линзой. Оптическая сила линзы. Оптические приборы.

Разложение белого света на цвета. Цвет тел.

Фронтальная лабораторная работа

10. Получение изображений с помощью линз.

9 класс (102 ч, 3 ч в неделю)

Законы взаимодействия и движения тел(34 ч)

Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. [Искусственные спутники Земли.] (В квадратные скобки заключен материал, на являющийся обязательным для изучения) Импульс. Закон сохранения импульса. Реактивное движение.

Фронтальные лабораторные работы:

1. Исследование равноускоренного движения без начальной скорости.

Механические колебания и волны. Звук (16 ч)

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. [Гармонические колебания]. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. [Интерференция звука].

Фронтальная лабораторная работа:

2. Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.

Электромагнитное поле (26 ч)

Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. [Интерференция света.] Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. [Спектрограф и спектроскоп.] Типы оптических спектров. [Спектральный анализ.] Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Фронтальные лабораторные работы:

- 3. Изучение явления электромагнитной индукции.
- 4. Наблюдение сплошного и линейчатых спектров испускания

Строение атома и атомного ядра (19 ч)

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Экспериментальные методы исследования частиц. Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения для альфа- и бета-распада при ядерных реакциях. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд.

Фронтальные лабораторные работы:

- 5. Измерение естественного радиационного фона дозиметром.
- 6. Изучение деления ядра атома урана по фотографии треков.
- 7. Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.
- 8. Изучение треков заряженных частиц по готовым фотографиям.

Строение и эволюция Вселенной (5 ч)

Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.

Итоговая контрольная работа (1 ч)

Учебно-тематическое планирование

Предмет: физика

Класс-7

Всего по программе 68 часов, из них на повторение за 2023-2024 уч. год выделено 2 часа.

№ п/п	Раздел программы	Количество часов	Кол-во Лабораторных работ	Кол-во Контрольных работ
1	Физика и физические методы изучения природы	4	N <u>o</u> 1	paoor
2	Первоначальные сведения о строении вещества	6	№2	
3	Взаимодействие тел	23	№3,4, 5, 6,7	1
4	Давление твёрдых тел, жидкостей и газов.	21	№ 8, 9	1
5	Работа и мощность. Энергия	13	№ 10, 11	1
6	Резервное время	1		
	Итого:	68	11	3

Учебно-тематическое планирование

Предмет: физика

Класс – 8

Всего по программе 68 часов, из них на повторение за 2023-2024 уч. год выделено 2 часа.

№		Количест	Кол-во	Кол-во
п/п	Раздел программы	во часов	лабораторных	контрольных
			работ	работ
1	Повторение	3		
	материала 7 класса			
2	Тепловые явления	10	№ 1, 2	1
3	Изменение	11	Nº 3	1
	агрегатных			
	состояний вещества			
4	Электрические	29	№ 4, 5, 6,7,8	2
	явления			
5	Электромагнитные	5	№ 9,10	1
	явления			
6	Световые явления	10	№ 11	1
	Итого:	68	11	6

Учебно-тематическое планирование

Предмет: физика

Класс – 9

Всего по программе 102 часов, из них на повторение за 2023-2024 уч. год выделено 3 часа.

No		Количест	Кол-во	Кол-во
п/п	Раздел программы	во часов	лабораторных	контрольных
			работ	работ
1	Повторение по теме:	6	1	
	«Световые явления»			
1	Основы кинематики	15	№ 1	
2	Основы динамики	15		
3	Законы сохранения	4		1
4	Механические	16	№ 3	1
	колебания и волны.			
	Звук.			
5	Электромагнитное поле.	24	№ 4	
	Электромагнитные			
	колебания и волны			

6	Строение атома и	16	№ 7, 9	1
	атомного ядра.			
	Квантовые явления			
7	Строение и эволюция	5		
	Вселенной			
8	Резерв	1		
	Итого:	102	11	3